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Abstract

Timbre is a mysterious property of music that is so important in music but still remains compli-
cated to describe in a quantifiable way. Some studies on timbre stood upon a subjective perspective
and yield semantic descriptors, while some others, on the other hand, treated music as a kind of
signal without paying much attention to the perceptual characteristics. Considering that both the
subjective understanding and the information in data are equally important, this work proposes a
middle space of interpretable parameters in between that takes the advantages from both sides. In
this documentation, the parameter extraction model is explained in detail and the informativeness
and descriptive capability of the space is verified by a musical instrument recognition experiment.
On the synthetic side, some methods for timbre design will be specified, and a GUI1 for interac-
tive demonstrations of the work is also implemented. Finally, some discussions are made with the
expectation for a prosperous development of the approach of designing sound and music directly
by sculpting the morphology of the spectrogram. 2

1 Introduction

Timbre is an attribute of musical sound that have always been interesting for researchers, but hasn’t
been well-defined for decades. Many efforts have been made to find a proper description or a way of
quantification, but there is still not a widely agreed numerical definition for timbre until now. One
reason is that timbre generally plays the role of a complementary property of pitch, loudness, and
duration[1], which has a broad sense of sound characteristics. Therefore, a lot of studies from various
standing points were proposed and promoted regarding the describing and synthesizing of timbral
sound.

In early studies, many attentions naturally focused on standardizing semantic descriptors[2][3][4]
and finding multi-dimensional timbre space[5][6][7].These works all have a common underlying empha-
sis on the fact of human perception, for which they derive their result from human listening tests. In
addition to defining some quasi-orthogonal dimensions, they also tried to find quantifiable scales for the
axis. However, these two requirements are hard to be met at the same time. Other later approaches
involve the perspectives of signal processing, which treats music timbre as a audio signal and applies
models in audio processing to discover the magic behind. Sound have two common forms of represen-
tation, the serial representation as a raw waveform, and the matrix form as a spectrogram. Research in
this field actively use both as the stimuli to their models. The former, due to its high complexity and
large data amount, always needs algorithms that have the power to extract some high-level features,
thus is preferred by some deep learning methods[8][9]. The later, involving a transforming of data at
first, though is equally informative in machine learning models[9][10], it also provides possibilities for
traditional signal processing research[11][12].

This orientation in methodology exploits the state-of-art models and without a doubt has more
potentials in digging out and manipulating the information. However, it nevertheless neglect some
subjective aspects which leads to some difficulties in the interaction with users who tend to modify
or design timbre of their own interest. To both take the advantages of the data and preserve the
interpretability of the controlling features, this work defined a parameter space with a set of features
extracted from the spectrogram of a sound that is at the same time understandable. It is always
possible to reconstruct the sound from the parameters, which verify the fidelity of the information
on the parameter space. I also verified the interpretability and the distinguishability by designing

1https://github.com/ZhangHanpqqo/timbre analysis synthesis
2Presentation of the work: https://zhanghanpqqo.github.io/HanZhang/assets/HanZhangThesis.pdf
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experiments to map the parameters to existing semantic descriptors and to recognize the identity of
musical instruments. To test the potentials of synthesizing sounds, I also tried sound morphing, which
is the interpolation of two different timbre, in the parameter space. Finally, I implemented a GUI to
allow real-world interactions between the data and human.

This paper is organized as follows. Section 2 introduces some works that are closely related,
though not exactly the same, to this topic of analysing and synthesizing timbre from the spectrogram.
Section 3 explains details of the parameter extraction model which contains the fundamental models,
description of the parameters and the discussion on the reconstruction results. Section 4 introduces
the model’s capability in timbre analysis with the experiment on instruments recognition. Section 5
elaborates some possibilities of the synthetic power of sound modification and morphing. In section 6,
a conclusion of this work is made, and finally in section 7, some outlooks of the future works is stated.

2 Related Works

2.1 Spectral Modeling Synthesis

Many sound synthesis models are based on the fact that sound can be decomposed by a combination of
some time-varying sinusoidal waves with various frequency[13], which is commonly named the additive
model of audio. This model has tested to be informative and expressive by many vocoders, and the
Spectral Modeling Synthesis[11] tool is a relatively comprehensive model for detecting the deterministic
sine components and modeling the residual noise component with stochastic model. It shows the
ability of extracting harmonics by tracking the frequency of amplitude peaks within each time frame
and concatenating the results, and further reconstructing the sound by adding up the sine waves
according to the frequency and amplitude detected. It gives good performance not only for pitched
musical sounds, but also for more complicated unpitched percussive sound. Among the several models
it provides, the Harmonics plus Stochastic model gives a reliable detection of the sinusoidal component
and a concise representation of the rest, and it is the embedding model used in the parameter extraction
model in this work which is explained in later sections.

2.2 AudioSculpt

AudioSculpt[14] is a commercial software developed by IRCAM, France. It is a sound processing
software and the processes happen under some graphic represents of sound including spectrogram,
and it maturely integrates tools for sound producing by directly drawing on the spectrogram. The
reason for mentioning it here is to compare this work with some existing products that share similar
means of representing the sound and process but may have different ambition. While AudioSculpt
relies on a imported sound to be modified as a source, this parameterization approach contains the
power of generating a sound from the scratch, and the structured form of data makes the analysis steps
easier than unstructured data types like the spectrogram. Even with the difference, the explicitness
of graphic representations in AudioSculpt still inspired the parameters setting section of the GUI for
this work.

3 Parameter extraction model

For most pitched musical timbre, most of its energy falls in the harmonics and the beginning part where
the attack happens, and they are perceptually important as well, since the cochlea receive vibration
by frequency, and the level of the stimuli depends on the energy in each critical band[15]. The main
focus of this work is to use features that reflect the morphological characteristics of the harmonics.
The attack, which is also significant for the identification, is always considered as a separate problem
due to its own complexity and is not particularly discussed in this paper.

3.1 Additive model

The additive model is at the heart of the whole system. Generally, a audio signal x(t) can be expressed
as the summation of a set of sinusoidals multiplied by time-varying weights for each frequency band,
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Figure 1: 3-dimensional plotting of the first 10 harmonics derived from a trumpet playing in A4 in
different steps. The three dimensions are time, frequency, and magnitude. (a) Harmonics extracted
by HpS tool. (b) Smoothed harmonics. (c) Harmonics reconstructed from the parameters.

namely:
x(t) = ΣN

k=1Ak(t)sin(ωk(t) ∗ t+ ϕk(t)) (1)

where Ak(t) means the amplitude for the k-th harmonic at time t, and ϕk(t) is the phase offset.
For an acoustic signal, the amplitude for the magnitude and the phase can be easily calculated

with the help of time-frequency transforming strategy, like the Short Time Fourier Transform(STFT).
There are arguments that the phase is not perceivable for musical timbre and can be randomized,
but some works deliberately test on the effect of phase and assess the importance of the phase[16].
Considering the potential significance of phase especially in sounds with larger transients, we still need
to take the phase spectrogram into account though it’s not necessarily to be accurate.

The Harmonics plus Stochastic(HpS) model[11] utilized as a fundamental harmonics detection
method in this work is based on the additive model as well. The harmonics detected by the HpS can
be visualized in a 3-dimensional time-frequency-magnitude space shown in Figure 1(a).

3.2 Parameters

There are three time-varying attributes appear in the model: Frequency, Magnitude and Phase, thus
every harmonic indeed can be controlled given these three properties. Before separately viewing the
details of the parameters related to these three dimension, it is worthwhile to mention that all the
harmonics are denoised by eliminating the points where harmonics are not successfully detected, i.e.
the sharp stitches in Figure 1(a), and assign values by doing interpolations before getting parameters
from. This pre-process practically reduces the disturbing effects caused by the false detection thus
credibly increases the reliability of the parameters. The denoising result is visualized in Figure 1(b),
in which the harmonics are obviously smoother than that of (a).

3.2.1 Frequency

It is not hard to observe that the frequencies are not consistent along the time frames. Some random
fluctuations in the peak frequencies are slightly altering from frame to frame. More importantly,
all kinds of musical instruments are not purely harmonic due to the vibrating nature of its acoustic
structure.In other words, the higher partial frequencies are not necessarily to be the multiples of the
fundamental. This inharmonicity is called the stiffness of a sound[17]. Although some literature suggest
that the stiffness is not audible[18], it is still considered valuable to save the characteristic for analytic
reason and for scaling to rougher non-musical timbre later.

To represent the frequencies, we use the mean and variance for each harmonic’s frequency offset
from the exact multiplication of the fundamental with an underlying observation that the offsets are
distributed in a Gaussian manner. When doing reconstructions, the frequencies are first allocated
according to the distributions, following which is a smoothing process, for the random fluctuations can
bring in extra level of high frequency noise when testing.
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3.2.2 Magnitude

Magnitude jointly contains two piece of information: the energy distribution across frequency and the
internal magnitude changes over time. The energy distributions rarely change within one note for
most of the instrumental sound, and there is a widely accepted Attack-Decay-Sustain-Release(ADSR)
model[19] that fits for a large portion of sounds’ propagation through time. At the same time, it is
equally important to keep the conciseness and the interpretability. Therefore, the scheme is to segment
each harmonic with four key points that locate the Start of Attack(SOA), End of Attack(EOA), Start
of Release(SOR), and End of Release(EOR). Figure 2(a) shows a typical singular harmonic with a
complete ADSR shape being segmented with four key points marked as orange crosses. At the sound
modeling stage, it is more efficient to think of the general shape and not look too close the specific
fluctuations within the segment, since it only depends on the articulation of the note, but does not
have a lot of effects on timbre itself.

(a) (b)

(c)

Figure 2: (a) Typical ADSR shape of singular harmonic. The crosses mark the four key points of
segmentation strategy. From left to right: Start of Attack(SOA), End of Attack(EOA), Start of
Release(SOR), and End of Release(EOR). (b) Example on how to ensure the location of EOA. (c)
Curve shapes for 2 with various n.

Intuitively, all the points can be detected by some assigned thresholds. For instance, the SOA and
the EOA are at the time epoch where the amplitude meets certain ratios of the maximum amplitude
of the harmonic if scanning the harmonic from the beginning; likely, the SOR and the EOR can take
the same strategy but scan the harmonic reversely. This method works well for SOA, SOR, and EOR,
which always give reasonable location on the harmonic with the threshold of 10% of max, 70% of max,
and 10% of max. The only exception is the EOA. In a stereotypical impression, the end of attack
should be the place with the highest magnitude, so the EOA should be very close to the summit thus
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has a high threshold for detection. However in real world cases, many recordings in the database
contains a natural crescendo, that is a slow rising in volume, within one note, which causes both the
maximum point and the EOA turn out to be very close to the end of the note, as the shape shown
in the left plot of Figure 2(b). This false detection is unacceptable since the rise time of a sound is a
crucial factor for timbre identification[20], thus needs a precise determination.

Therefore, a more delicate method is proposed with a two-step estimation of the precise EOA
location. In stead of simply checking the value, it tracks the gradient. The first step is a coarse
estimation. After smoothing the harmonic, we calculate the derivative and find the first point whose
derivative falls roughly around zero. In the example in Figure 2(b), the derivatives are shown on the
right and the green dots in both plots indicate the point found in step 1. Then the harmonic between
the SOA and the SOR can be cut into two parts by the point. The second step is a fine tuning step
which fits the two parts with a couple of cubic splines and calculate the intersection of the curves to
be the EOA. The left plot in Figure 2(b) shows the splines and found their intersection at the red dot,
which is designated as the EOA of this harmonic.

Besides the time epoch and magnitude of the key point, the shapes of each segment also need to be
recorded. Taking down all the values in the segments can be so redundant and undesirable, but simply
doing interpolations between the key points will also lose expressiveness since many shape information
will be abandoned. As a result, a single-degree-of-freedom curve which can fit both the concave and
convex situation is a suitable compromise. The curve equation being used in this work is:

y = ys + (ye − ys)(1− (1− x− xs

xe − xs
)n)

1
n (2)

where (xs, ys) is the time and magnitude tuple of the key point on the left of the segment and (xe, ye)
is the tuple of the right key point. Some examples of the curves are plotted in Figure 2(c). The range
for the parameter n is from 0 to 40, and the larger n is, the sooner the magnitude approaches the end
value.

With the set of parameters representing the location of the key point, the value of the key points,
and the shape between them respectively, there is a straightforward path for doing reconstruction.
First load the key points for every harmonics, and then calculate the values in between referring to the
shape parameter and the identical curve equation. The whole magnitude spectrogram can be covered
and being controlled in a relatively small set of data. The reconstruction result of the example trumpet
sound is displayed in the 3D plot in Figure 1(c).

3.2.3 Phase

As stated in previous sections, phase is a minor feature in steady musical sound without abrupt
transients. It generally follows the propagation principle of sinusoidal waves:

ϕi+1 = ϕi +
2π fi+fi+1

2 H

fs
(3)

in which ϕi is the phase of the i-th time frame, fi is the frequency of it, fs is the sampling frequency,
and H is the hop size for the STFT transformation that operates before extracting the harmonics.
This equation illustrates that the method to get the phase of the current frame is to add the angle
that the sine wave traveled from the last frame to the present.

Now think of the problem backward, we need a take-off line for the propagation, that is the phases
for the first frames. It is hardly audible to randomize the values, but a linearity of the phases to the
number of harmonics shows in the experiments, so it is reasonable to add two more parameters, the
slope and the intercept of the linear regression to anchor the first frame phases and further develop
the phase spectrogram.

3.2.4 Residual noise

The residual is the portion of the spectrogram that is not included in the deterministic part of har-
monics. This part is mainly composed by some noise and super high partials that are not detected and
thus being considered as noise as well. In the HpS model, the level of the residual noise is measured
in a much wider frequency band and are sampled much sparser in time. Based on the levels, some
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stochastic noise can be generated and attached to the corresponding region of sound. Modeling noise
can be another complicated problem, so here the original parameters for the stochastic model in HpS
are preserved.

3.3 Discussions

Now in the parameter space, the frequency, the magnitude, and the phase all have their own descriptors
and can jointly reconstruct a sound. Have to admit that the vividness is sacrificed and some artifacts
are also introduced by the parameterization scheme, but many of the degraded consequences can be
make up by some post modulation steps. However, there is an advantage that should not be overlooked,
which is the conciseness of the space and the interpretability for every single feature.

In Table 1 below all the parameters for the harmonics are listed and the total amount of the
parameters is also calculated. The size of the parameter space depends on the harmonics required or
can be included under the sampling rate. Usually, detecting 40 harmonics is far beyond enough, and it
only consumes 602 parameters in this model, and the size is independent to the duration of the original
sound. Comparatively, if using full data for the harmonics of a 1 second sound as those projects using
spectrograms as stimuli, also demanding 40 harmonics, then there will be 3480 features to deal with.
If the length of the sound keep expand, then the number will grow even larger.

Parameter Name Parameters amount (N = num-
ber of harmonics)

Frequency offset mean N

Frequency offset variance N

Magnitude key point time 4N

Magnitude key point magnitude 4N

Magnitude segment shape 5N

Phase of first frames 2

Total 15N+2

Table 1: All of the parameters for harmonics and their numbers.

The interpretability is another advantage. Although its benefits are not quantifiable, it is not hard
to understand that with the features that can be elaborated with natural language, and that all the
changes they bring to the timbre are meeting the expectations, users can easily make use of the model
for more explorations in sound designing and making music.

4 Instruments recognition

The feature extraction model presented in the previous section have introduced the composition of the
parameter space. In this section, we measure the ability of the space to describe and represent timbre
by verifying its capability in musical instruments classification.

Musical instruments recognition is a problem that has arisen many discussions. Settings of this
problem have being changing in different aspects, from family-level classification to instrument-level
recognition[21], from monophonic input to polyphonic inputs[22][23], from clip-wise resolution to frame-
wise resolution[24]. For the classification task in this work, we choose a fairly simple scenario, doing
clip-wiser instrument-level multi-class classification on monophonic recordings, and we used a baseline
level model to tackle with the problem. It is because the purpose of this experiment is not for designing
models to well-perform the mission, but to demonstrate the parameters’ capability in analysis timbres.
If faced with more completed settings later, it would be feasible to increase the complexity of the
classification model.
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Figure 3: Hierarchical strategy for 8-class musical instrument recognition.

4.1 Model

The task is to classify eight different instruments selected from three orchestra classes. All the instru-
ments and families will be specified in later sections. The model being used here is a random forest
with 80 decision trees. Random forest is often used as the baseline model for machine learning tasks,
so if the result is on an acceptable level for a multi-class classification, then it is reasonable to believe
that with a better tuned model, the parameter space is very likely to provide better performance.

Comparing to directly apply 8-class classification to the data set, it sometimes works better to
do it hierarchically, for which we do a family-level classification first and within each family identify
each instrument with a subsequent classification. The structure of this hierarchical scheme is shown
in Figure 3.

4.2 Database

The recordings we used to train and test the model are from the sound sample library of London
Phiharmonia Orchestra[25]. We collected samples for all the eight instruments: flute, oboe, clar-
inet, french horn, trumpet, saxophone, violin, and cello from their corresponding instrument families:
woodwind, brass, and string. There are 1834 samples in train, validation, and test set in total with
an approximately equal distribution for each instrument. All the samples are clearly labeled by the
name of the instrument, the pitch, the dynamics, the articulation, and the duration. In this task, only
steady state articulation are included and recordings with impulsive articulations are left out, like the
pizzicato for strings.

The data is randomly split into the training, validation, and test set with a proportion of 70%, 20%,
and 10%. The distribution of the instrument, dynamics and duration are approximately identical.

4.3 Result

The accuracy of the recognition for each instrument and the overall accuracy is listed in Table 2. The
result, from a general perspective, is sufficient to demonstrate the descriptive power in the parameters.
For the two classification strategies, the hierarchical structure gives a better overall result than direct
classification, but its effects to individual instruments varies. Most samples detected as woodwinds
are correct, and the two instruments in brass family but have close relationships with woodwinds,
the french horn and the saxophone also have plausible accuracy. However, the accuracy for trumpet
and violin is a little bit disappointing, which indicates that other instruments are very easily to be
falsely detected as these two. Need to mention that sometimes it is trick to distinguish the timbre
of instruments in same family, especially for string instruments whose timbres sound similar even to
well trained musicians. The classification result shows the same fact that for the binary classification
between violin and cello, if the pitch is not specified, then the overall accuracy is barely 0.68.

4.4 Analysis

The instruments recognition experiment not only verifies the analytic power of the model, but also
provides an angle to rethink of the parameter space itself. In the model of random forest, there is
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Instrument Name 8-class Hierarchical

flute 0.92 0.96

oboe 0.78 0.80

clarinet 0.95 0.92

french horn 0.89 0.84

trumpet 0.60 0.69

saxophone 0.89 0.96

violin 0.53 0.45

cello 0.96 0.83

Overall 0.79 0.81

Table 2: Classification accuracy for 8 classes of instruments.

a measurement called Gini index[26] that reflects the significance of the features. Intrinsically, this
scalar calculates how much impurity one feature is able to reduce, so the importance of a feature in
representing the timbre is proportional to its Gini index value.

The importance of parameters are illustrated in Figure 4 and the descriptions for each region are
specified at the top. The spikes of data appear periodic manner with the interval of 40, which is
the total harmonics detected. In other words, the lower harmonics tend to contain more descriptive
information than higher partials.

Among all the parameters, the features that imply the proportions of energy distributed in each
harmonic show the greatest importance, and this is not a unique phenomenon for low harmonics since
the overall level of significance is also higher than other features. This fact corresponds with the insights
of research on timbre descriptor, many of which mention that the descriptors for energy distribution
across frequency bands usually are likely to be more obvious and audible to listeners[20]. Other features
that are relatively more useful are the rise time, release time, and some features designating the shape
of the harmonics.

5 Capability in sound synthesis

In additional to the descriptive function of timbre, another primary purpose of the project is to propose
a new approach of sound synthesis by shaping the harmonics with its morphological features. By giving
proper values to the parameters, it doesn’t take much effort to design a sound from the scratch. The
only concern is that it needs some tuning of the parameters to approach the desired sound due to
the lack of experience and efficient techniques of tuning. Also, in terms of testing the capability in
synthesis, to avoid the subjective factors in evaluating the quality of the sound, generating timbre from
the scratch may not be an ideal option.

Instead, importing some reference sounds and use their parameters as templates for tuning would be
a better way of testing the possibilities in doing sound synthesis. In the GUI that we implemented for
demonstration(sources attached to the footnote of page one) in Figure 5, after importing the reference
sound, all the parameters will be extracted automatically and listed in the parameter tuning section
on the right. By assigning new numbers or dragging the key points, the parameter and the shape
that displays in the widgets on the left will alter accordingly, and the users can always listen to the
synthetic sound.

Another interesting attempt is to modify timbre with the characteristics of one another, which we
call it sound morphing. Technically, sound morphing means to do interpolations between two given
timbres. It can be complicated when using raw waveform or spectrogram as stimuli, so the methods
dealing with this problem often involve deep learning models[3]. This model, nevertheless, is naturally
convenient for interpolations, since all the features are scalars and have semantic meanings. Tests
of doing interpolations in the parameter space give perceptually reasonable result. For example, we
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Figure 4: Parameter importance measured by Gini index in the random forest model. The horizontal
axis is the number of parameters, and the descriptions for each region are elaborated above the data.

tried to morph a bright trumpet sound with a hollow clarinet timbre given a morphing rate of 0.5,
which means we are expecting a sound in the middle of these two timbres, and the system generated
a french horn alike timbre which has some brassy factors but is dimmer and less directional. If try
to classify the sound with the trained classifier introduced in previous sections with a morphing rate
increasing from 0 to 1, then the recognition result will shift from trumpet, oboe, french horn, and
finally to clarinet. The trajectory matches the impressions to the timbre evolution. This function is
also integrated in the GUI, and a video demo can be found in the URL at first page’s footnote as well.

6 Conclusion

The main contributions of the work is to define the understandable parameter space for the morpho-
logical characteristics of harmonics in musical sounds, which plays the role of an interpretive bridge
between the perceptual nature of timbre and the analytical power of signal processing methods. Its
informativeness and its descriptive capability is verified by a musical instrument recognition experi-
ment. On the synthetic side, the parameters also show a good control for timbre modifications. The
GUI of the model provides an interactive platform for users to test the functions and play with the
parameters for more understanding.

7 Future works

Currently, I have just finished a basic system for morphological parameter extraction and timbre
analysis and synthesis based on the parameters. This work just include some fundamental versions
for all of the functions being expected and is only sufficient to demonstrate the rough idea of the new
approach for designing timbre and music from the spectrogram. This is not a new concept in the
music world, but the technological implementation is still behind the creative mind of musicians, so
accomplish a complete system for this idea is the destination of this project.

Obviously, it is a huge narrative, so some near future plan is focusing on these following aspects:
1. Refining the parameter extraction model for more precise descriptions. 2. Developing a better
attack and residual noise modeling method so that the reconstruction quality of impulsive sounds can
be improved. 3. Thinking of modulations and transformations of the reconstructed sound that makes
the sound more vivid and explores more possibilities. 4. Mapping the parameters to the semantic
descriptions for a better explanation of the acoustical function of the parameters.
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Figure 5: A screen shot of the GUI for the demonstration of the system. On the left are some widgets
displaying the spectrograms and harmonics for both the original sound and the synthetic sound. On
the right are the parameter displaying and tuning sections that integrates the sound synthesis functions
that are mentioned in Section 5.
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