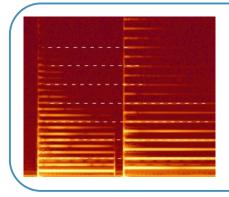
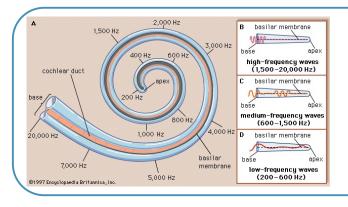
MUSIC TIMBRE ANALYSIS AND SYNTHESIS

HAN ZHANG'S MASTER THESIS

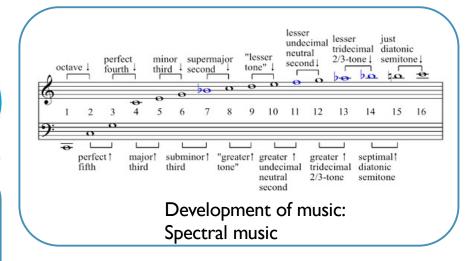

HanZhang2020@u.northwestern.edu

PURPOSE

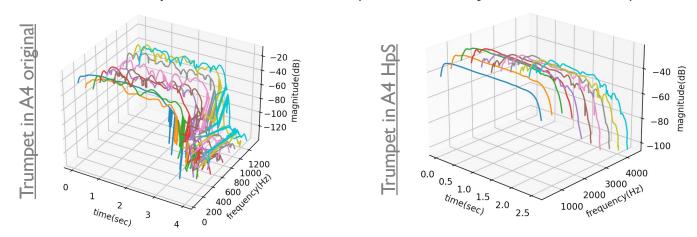
 Design a framework for the extraction and modification of harmonics morphological features for musical sounds and develop a synthesis method that allows the sound reconstruction, design, and morphing based on the features.

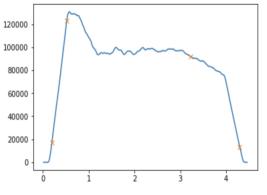

Analysis Extract morphological features of harmonics Relate the features to timbre descriptors Distinguish musical instruments Synthesis Reconstruct sounds from the features Modify some parameters for new musical timbre Morph sounds

MOTIVATION

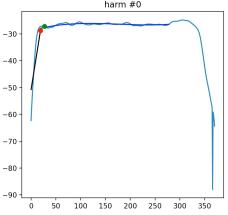


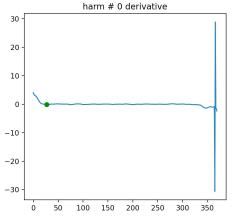
Fact of sound: Additive model

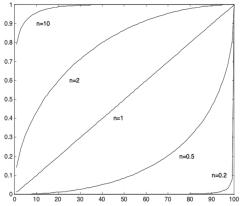

Fact of human perception:
Cochlea structure


Step I: Harmonics detection

SMS Tools: Harmonics plus Stochastic model (Xavier Serra, Julius Smith, 1990)


Step2: Harmonics parameterization


- Frequency: Control with the first and the second moment.
- Magnitude: Segment each harmonic into attack, steady and release parts. Fit each segment with a single-degree-of-freedom curve. (Kristoffer, 2006)



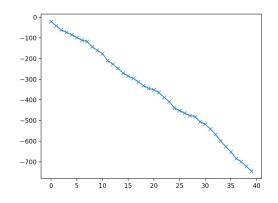
SOA: start of attack (10% of max) EOA: special detecting model SOR: start of release (70% of max)

EOR: end of release (10% of max)

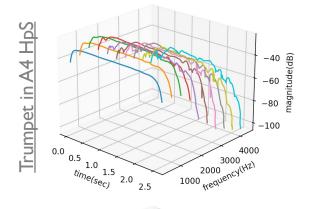
440

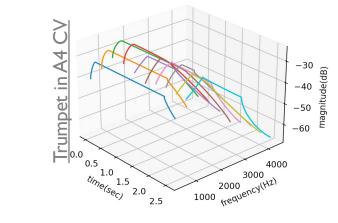
0.5 1.0 1.5 2.0

Curve_s = $v_0 + (v_1 - v_0)(1 - (1 - x)^n)^{\frac{1}{n}}$

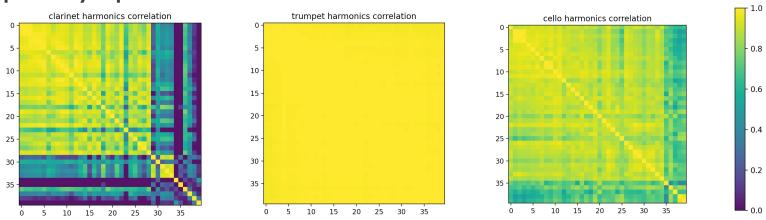

Step2: Harmonics parameterization

Phase: Phase propagation through time.


$$\varphi_{i+1} = \varphi_i + \frac{\pi * (f_i + f_{i+1}) * H}{f_s}.$$

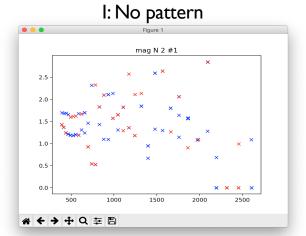

H: hop size; φ_i : the phase of frame I; f_i : the frequency of frame I; f_s : the sample frequency.

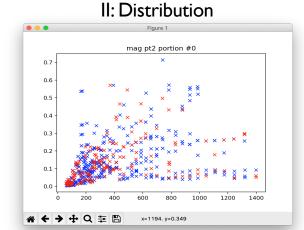
Linear first frame phases: Apply a linear regression.

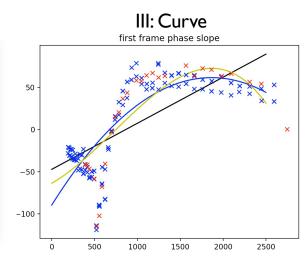

First frame phases of flute on A4. Horizontal: harmonic number, vertical: phase

- Performance Evaluation
 - Details degraded.
 - Good reconstruction for continuous sounds, bad for impulsive sounds.
- Pros:
 - Small number of parameters. (O(nH))
 - Interpretability
- Cons:
 - Limited possibility for timbre. → Transformations.
 - Lack of numerical sound quality estimation. → Listening tests.
- Comparing with sub-band analysis models:
 - SMS is more adaptive to pitch changes.
 - More detailed parameters comparing to coefficients.

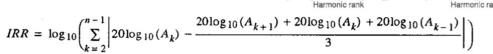
Exploratory experiment: Harmonics correlation

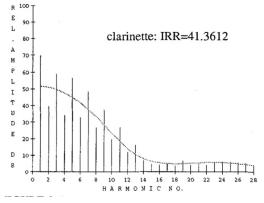


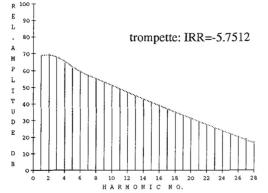

- Relationship between the directionality and the correlation.
- Possibility of further shrink the parameter space: grouping harmonics.


SOUND FEATURE ANALYSIS

Relationship between features and fundamental frequency




- Inconsistency among different instruments for the same feature
- Still debatable:
 - Spectral envelopes of sustained orchestral instrument sounds are invariant to variation in F0. (Patterson et al. 2010)
 - Dynamics should be considered. Some instruments show linearity in spectral centroid. (Siedenburg et al. 2021)


SOUND FEATURE ANALYSIS

Semantic descriptions for the parameters

- Timbre Space (S. McAdam, 1995)
 - I: Spectral Gravity Centroid →
 - II: Logarithm of rise time
 - III: Spectral Flux

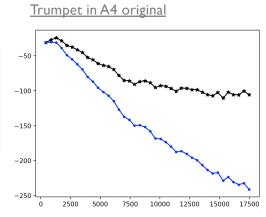
High SCG

-20

-40

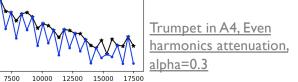
-60

-80

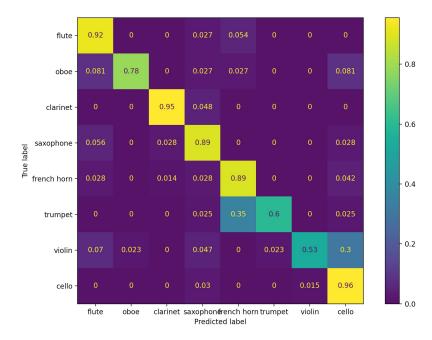

-100

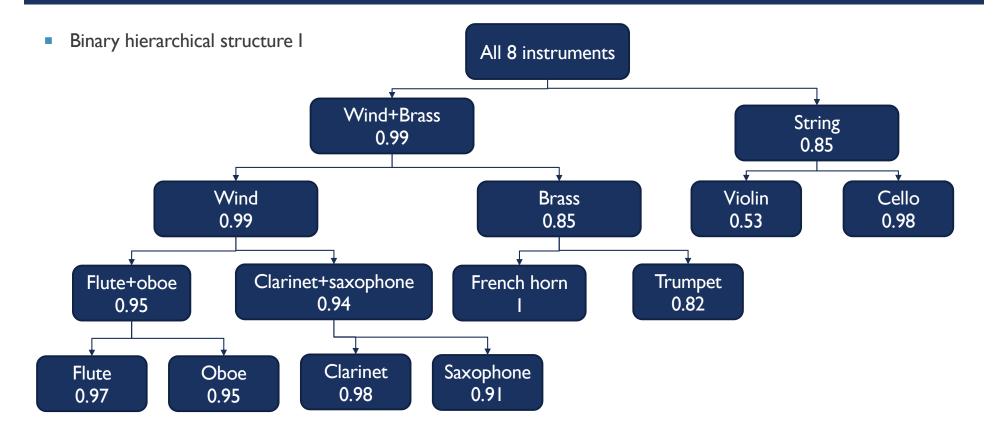
-120

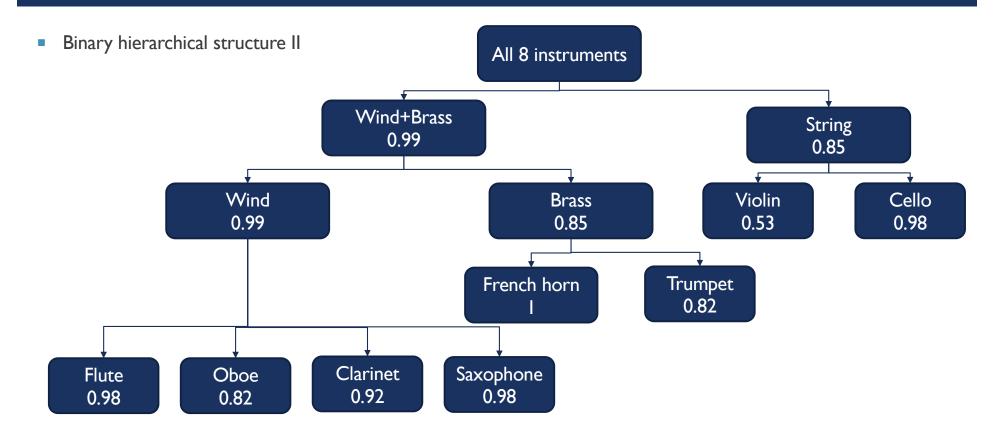
2500


5000

Amplitude 0.5 0.4

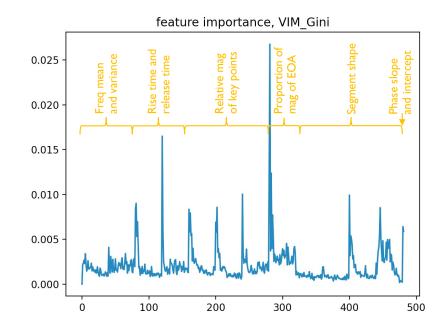

#I harmonic magnitude Black: original Blue: modified


Trumpet in A4, exponential attenuation alpha=0.4



- Database: Phiharmnia Database: records of acoustic instrumental sounds for all orchestra instruments.
- Instruments: flute, oboe, clarinet, saxophone, french horn, trumpet, violin, cello
- Classification model: random forest with 80 decision trees
- Result:

Train 1.0 Test 0.8492 OOB score 0.8309

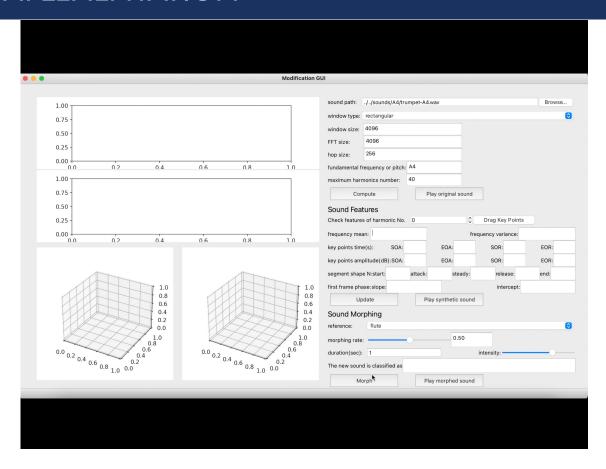

Paper	Features	Classification method	Accuracy
'MUSICAL INSTRUMENT RECOGNITION USING CEPSTRAL COEFFICIENTS AND TEMPORAL FEATURES' (2000)	Cepstral, spectral and temporal	kNN, hierarchical classification	93% for family, 74.9% for instrument
'COMPARISON OF FEATURES FOR MUSICAL INSTRUMENT RECOGNITION' (2001)	Cepstral, spectral and temporal	kNN	91.7% for family, 45.9% for instrument
'Musical Instrument Recognition by Pairwise Classification Strategies' (2006)	Cepstral, spectral and temporal, OBSI	GMM, SVM, applying pairwise strategy	87% for instrument
'FRAME-LEVEL INSTRUMENT RECOGNITION BY TIMBRE AND PITCH' (2018)	Constant-Q transformation matrix, estimated pitch	CNN	90.0% for instrument
'AN ATTENTION MECHANISM FOR MUSICAL INSTRUMENT RECOGNITION' (2019)	Spectrogram	ATT(attention model), CNN	~85% for instrument
This model	Harmonics morphological features	Random forest	8-class: 79.1% for instrument Hier1: 80.4% for instrument Hier2: 81.2% for instrument

Feature importance

- Gini index: the effectiveness of reducing impurity
- Observations:
 - Lower harmonics tend to be more informative
 - Magnitude proportion, rise and release time, and some other features show great importance in the classification model.

Strengths of this model

- Less feature numbers, higher efficiency
- Being semantically meaningful, feature importance can be more explicitly explained

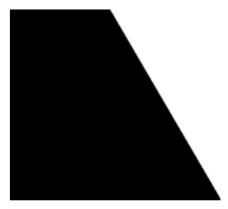

TIMBRAL SOUND MORPHING

- Strategy: Interpolate every feature between two reference sounds, given the morphing rate.
- Example:

instrumentl	1+0	0.9+0.1	0.75+0.25	0.5+0.5	0.25+0.75	0.1+0.9	0+1	instrument2
flute	<u>flute</u>	clarinet	flute	<u>horn</u>	flute	<u>oboe</u>	<u>horn</u>	trumpet

- Comparing with existing works:
 - Differentiable DSP(Engel et al. 2020), Music Translation Network(Mor et al. 2019): smaller parameter space; continuous morphing rate.
 - Nsynth sound morphing(Engel et al. 2017): smaller parameter space; more flexible in partial morphing

INTERFACE IMPLEMENTATION



INTERFACE IMPLEMENTATION

Comparison with some other sound synthesis/modulation tools

- Synthesizers
- Serum

CONCLUSIONS

- Designed and implemented a complete framework for the extraction and modification of harmonics morphological features for musical sounds. Developed a synthesis method that allows the reconstruction, design, and morphing based on the features.
- Proofed the informativity of the feature space by mapping semantic descriptors to the parameters and testing its capability of timbre recognition. Yielded meaningful conclusions on the importance of the features.
- Built an interface for the demonstration of the model and for further explorations on the features.

FUTURE WORKS AND OUTLOOK

- Feature extraction model refining
 - Attack modeling
 - Noise component modeling
- Mapping semantic descriptions to sound parameters
 - Listening tests
- Transformation
 - Allowing transformations corresponds with classic timbre descriptors
 - Allowing sound design from parameters
- Long term goal
 - Complete a comprehensive model for sound design or music composition based on the idea of shaping the spectrogram.
 - Provide a new perspective for music and an innovative approach for composition.